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Abstract-Improved theoretical expressions for Nusselt numbers are obtained for cross flow of 
liquid metals through rod bundles, by applying inviscid flow analysis [4, 51. The theoretical derivations 
are based upon the assumption that, for a rod located in the interior of a bundle, the circumferential 
variations of both the tube-wall temperature and the hydrodynamic potential can be expressed by 
cosine-type distributions. The former assumption is deduced from the experimental observations of Hoe 
et al. [q, under conditions where the heat flux was apparently close to uniform, and the latter is 
postulated on the basis of theoretical considerations. With these assumptions, the following expression 
for the Nusselt number, similar to that of Cess and Grosh [5], becomes 

Nut = 0.958 (A/DY (Pe)%,B, (V/Vm&. 

The above expression predicts Nusselt numbers which agree well with experimental results previously 
obtained at the Brookhaven National Laboratory [6,9]. 

A theoretical method of determining values of the parameter, 4,/D, the normalized hydrodynamic 
potential drop, is also presented. The results agree well with those obtained experimentally by Cess and 
Grosh [5]. An analytical expression for $*/D is obtained by using mathematical functions originally 
developed by Howland and McMullen [7]. The theoretical values of&/D for flow across two typical 
tube-bank geometries, i.e. square spacing and triangular equilateral spacing, were obtained with the 

aid of a high-speed digital computer. The numerical results are presented in tabular form. 
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NOMENCLATURE 

coefficients as defined by equation 
(17); 
specific heat at constant volume, 
Btu/lb degF; 
diameter of a cylinder, ft; 
over-all Nussel t number, ho D/k, 
dimensionless; 
over-all Nusselt number, ht D/k, 
dimensionless; 
pitch, ft; 
over-all Peclet number, PC, VD/k, 

dimensionless; 
over-all Peclet number, pCt, V,,, D/ 
k, dimensionless ; 
radius of a cylinder, ft; 
temperature, “F; 
temperature excess, T - Ti, degF; 
averaged temperature excess, 
degF ; 

* This work was performed under the auspices of the 
U.S. Atomic Energy Commission. 

uniform upstream temperature. 
“F; 
uniform upstream velocity, ft/s ; 
fluid velocity on the surface of a 
cylinder, ft/s; 
shell-side fluid velocity across tube 
bank and based on minimum flow 
area, ft/s; 
co-ordinate distance between the 
centers of cylinders, ft; 
cot ~5 as defined by equation (12~) ; 

polynom%ls as defined by equation 
(12b); 
average heat-transfer coefficient 
for a given tube, Btu/h ft2 
degF ; 
over-all heat-transfer coefficient 
based on a specified surface 
temperature, Btu/h ft2 degF; 
d-1; 
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thermal conductivity, Btu/h ft 
degF ; 
integer ; 
co-ordinate distance between the 
centers of cylinders in different 
rows, ft; 
co-ordinate distance between the 
rows of cylinders, ft; 
rate of heat flow per unit length 
of cylinder perpendicular to the 
direction of flow, Btu/ft h; 
surface heat flux, Btu/fP h; 
radial distance, ft ; 
integer ; 
time, s; 
velocity components in r and 0 
directions ; 
complex functions as defined by 
equations (7) and (8); 
the distance along the diameter of 
cylinder measured from the for- 
ward stagnation point, ft ; 

Greek symbols 
coefficient as defined by equation 
(10); 
angle measured from the forward 
stagnation point on cylinder, rad; 
parameter ; 
complex number as defined by 
equation (9) ; 
angle, radian or degree: 
temperature excess at p = n/2, 
degF ; 
surface temperature excess as de- 
fined by equation (2), degF; 
temperature as defined by equation 
(2), “F; 
average surface temperature excess, 
degF; 
thermal diffusivity, fP/h; 
diameter-to-pitch ratio, D/P, di- 
mensionless ; 
viscosity of fluid, lb/h ft ; 
absolute fluid evaluated at aver- 
age film temperature, lb/h ft; 
= 3.1416. . . .; 
density of fluid, lbm/ft3 ; 
fluid density evaluated at average 
film temperature, lb,/k3; 

modulus of the complex number, 
z, as defined by equation (9); 
temperature ratio as defmed by 
equation (3) ; 
hydrodynamic potential function; 
hydrodynamic potential on the 
surface of a cylinder; 
unit hydrodynamic potential func- 
tion, @/ - V; 
unit hydrodynamic potential on 
the surface of a cylinder; 
unit hydrodynamic potential at the 
rear stagnation point on a cylinder ; 
hydrodynamic stream function; 
unit hydrodynamic stream func- 
tion, Y/- V; 
parameter. 

INTRODUCTION 

THERE have been very few investigations dealing 
with the cross flow of liquid metals through 
staggered rod bundles. To the author’s know- 
ledge, there have been but one analytical study 
and three experimental studies reported in the 
literature. In the only published theoretical study, 
Grosh and Cess [4], by assuming inviscid po- 
tential flow, derived theoretical expressions for 
the Nusselt numbers for different surface 
temperature conditions of a single cylinder 
placed normally to the direction of flow. These 
results were then extended to cover the case of 
flow across a rod located in a bundle [5]. Their 
theoretical Nusselt numbers fell approximately 
l&20 per cent below the experimental values 
reported by Hoe, Dropkin and Dwyer [6]. The 
purpose of the present study was to extend the 
analytical treatment of the case of heat transfer 
to liquid metals flowing across rod bundles. 

In the present paper, a theoretical method of 
estimating values of c$JD will be first presented. 
The extension of the results for a single cylinder 
to one in a rod bundle-requires a knowledge of 
the hydrodynamic potential drop, #JJD, between 
the front and rear stagnation points of the rod. 
The solution of Laplace’s equation satisfying 
the appropriate boundary conditions is utilized 
to calculate this quantity. The expression for the 
hydrodynamic potential drop, +JO, is derived 
by making use of a mathematical function pro- 
posed by Howland and McMullen many years 
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ago [7]. Theoretical values of A/D have been 
obtained for two typical tube-bank geometries, 
i.e. tubes with equilateral triangular spacing and 
with square spacing. The entire computation was 
carried out with the aid of an IBM 7090 com- 
puter. The calculated results are presented in 
tabular form. These calculated values of 4,/D 
have been incorporated in the theoretical 
expressions for the Nusselt number, and com- 
parisons are made with available experimental 
results. 

Also, in the present paper, the derivation of 
the Nusselt number, Nut, for the case of a cosine 
surface-temperature distribution is presented. 
This derivation is based upon the assumption 
that the circumferential variations of both the 
tube-wall temperature and the llydrodyna~c 
potential on the surface of a cylinder located 
in the interior of a bundle can be represented by 
cosine-type distributions. It will be shown that 
this new expression predicts Nusselt numbers 
which agree well with the available experimental 
results. 

PREVIOUS STUDIES 

A, Analyticid 
The only analytical study which dealt with the 

heat transfer of low Prandtl number fluids 
flowing past a single rod or through rod bundles 
is believed to be that due to Grosh and Cess 
[4. 51. 

(a) 
(b) 

(c) 

(d) 

(e) 

(f ) 

fg) 

By using the following assumptions : 

Constant property, non-dissipative flow. 
Steady two-dimensional temperature and 
velocity fields. 
Incompressible, non-viscous and irro- 
tational flow. 
NegligibIe eddy transport of heat com- 
pared to molecular conduction. 
No contact resistance at the solid-liquid 
interface. 
The hydrodynamic potential distribution 
on the surface of a cylinder located in a 
rod bundle is linear with respect to R, the 
distance along the diameter of the cylinder 
measured from the forward stagnation 
point, i.e. 

4 = 41 (V-lD). (1) 

Interaction of the thermal boundary 

layers of the cylinders in a rod bundle is 
negligible. 

They derived several different expressions for 
Nusselt number by prespecifying the thermal 
condition on the surface of a rod. By assuming 
the variation of the surface temperature to be 
of the form: 

and 
8, (tg, - i&z - B* cos p (2) 

cs T= 0,/s,, (3) 

they obtained the following Nusseit number, 
Nrct, for rod bundles: 

From the experimen~l results of Hoe et uZ. 161, 
they further obtained the following expression 
for calculating the quantity, U, in equation (4) : 

u = o-10 (Pe)-3* (9 

To compare equation (4) with the experimental 
results of Hoe et al., Grosh and Cess recalculated 
the Nusselt number, Nut, based upon the defini- 
tion of heat-transfer coefficient, k, given by the 
equation : 

The average temperature excess, f&, was 
taken as the arithmetic mean of the nine surface- 
temperature readings obtained from thermo- 
couples spaced 40” apart on the circumference. 
The comparison is shown in Fig. 8. 

B. Experimental 
The experimental study of heat transfer to 

liquid metal flowing across rod bundles was 
first conducted by Woe eb al. [6] at Brookhaven 
National Laboratory. They measured local and 
over-all heat-transfer coefficients for flow of 
mercury under conditions of both wetting and 
non-wetting. The range of Reynolds number 
covered was from 15000 to 83000. The effect of 
the Prandtl number was not investigated. The 
rods were arranged in an equilateral triangular 
array, for which D/P was O-727. For a rod located 
inside the tube bank, they proposed the follow- 
ing empirical expression for the average shell- 
side heat-transfer coefficient. 
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The circumferential variation of both the local 
heat-transfer coefficient and the tube-wall 
temperature were also measured. With a Rey- 
nolds number range of 15000 to 80000 (corre- 
sponding to a Peclet number of 330 to 1760), 
it was reported that the local heat-transfer 
coefficient varied smoothly from a maximum 
value at the forward stagnation point to a mini- 
mum value at the rear stagnation point. This 
finding revealed that within the Reynolds number 
range covered by the experiment, the eddy 
transport of heat due to the separation of 
boundary layer and the turbulent wake is not 
very significant in comparison to the molecular 
conduction of heat. 

A later experimental study at Brookhaven of 
the heat transfer characteristics of liquid metals 
in cross flow through a rod bundle is that due to 
Rickard, Dwyer and Dropkin [9]. In this, both 
the local and tube-average coefficients were 
measured for the flow of mercury normal to a 
staggered rod bundle. The bundle was composed 
of sixty $-in tubes, six wide and ten deep, with 
equilateral-triangular spacing and a D/P of 0.73. 
The Reynolds number range was 20000 to 
200000. The effect of Prandtl number was found 
to be the same as that of the Reynolds number. 
The results were, therefore, correlated in terms 
of the Peclet number, and the following empirical 
expression was obtained 

Nut = 4.03 + 0.228 (Pe)$zax. (6) 

Recently, Borishanskii et al. [l] measured local 
and average coefficients for flow of liquid 
sodium across a staggered rod bundle. Despite 
the different material used, their results agreed 
quite well with those of Hoe et al. and Rickard 
et al. The theoretical expressions for the Nusselt 
number obtained in this study will be compared 
with the experimental results of Hoe et al. 
and Rickard et al. In either case, theoretical 
value of +JD obtained in this study will be 
incorporated into the theoretical equations. 

PRESENT STUDY 

A. Theoretical derivation of the hydrodynamic 
potential drop, +JD 

To calculate the Nusselt numbers for cross 
flow of liquid metal through rod bundles, it is 
necessary to know the value of &/D [5]. This 

term appears in the theoretical expression of 
Nusselt number for rod bundles, and it repre- 
sents the difference of the normalized hydro- 
dynamic potential between the forward and rear 
stagnation points of a rod located in the interior 
of a rod bundle. An analytical method of 
obtaining this quantity will be presented in the 
following. 

The calculation of &/D requires information 
concerning the distribution of hydrodynamic 
potential around a rod located in a rod bundle. 
The latter information can be obtained by solving 
Laplace’s equation for the specified rod bundle 
under suitable boundary conditions. Due to 
geometrical symmetry, it is only necessary to 
determine the potential field inside the shaded 
area shown in Fig. 1. The potential distribution 
around the circumference of a rod can then be 
determined, and eventually the potential differ- 
ence between the two stagnation points, a and 
b, can be calculated. For flow normal to the 
bundle, as shown in Fig. 1, the distribution of 
stream and potential lines can be well approxi- 
mated by those for flow across double infinite 
rows of cylinders which are in the same geo- 
metrical configuration. For the latter case. 
Howland and McMullen [7] have proposed a 
certain periodic function which may be used to 
obtain the distribution of the stream lines. The 
following complex analytic functions were 
defined by Howland and McMullen: 

\t$O : -~ log sin rr< + log sin r (lo .- 5) (7) 

and 

d* 
~1~ = -.--1-- - - [( - I >,-l log sin ~4 

(S - l)!d[a 

where 

- log sin r (5, - 5)J (8) 

5 = z/a =- p1 ke, : = x + iy, to = (p + iq)/a. 

(9) 

The distances, a, p and q, are explained in Fig. 2. 
Both (7) and (8) can be expanded, using the 
Maclaurin’s series expansion. 

The expansion of wS, for instance, results in 
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FLOW FLOW 

(01 BANK I (b) BANK 2 

FIG. 1. Schematic representation of flow across tube banks. 

with 

The polynomials, .fn, in (12) are 

.&(c) = 1 + c2 

f(c) = 2 c (1 + c? 

St(c) = 2 (1 + cy (I + 3 cs> 

!P = - Vr cos B 
cp 

(11) + VaP {E Ass+1 [pl(@+l) cos (2n + I)@ 
n;;O 

+ 2 py (“& cos n0 + 8yn sin no] 
n=O 

W) + 2 BZP [pi-as sin 2~0 + 5 p; (@a, cos n8 
s=I n=O 

(124 + 286n sin ne)] 1 (13) 

where 

--I + A, = --* h’ [$ zpil& I&,9+1 - i; 9, &8] 
5-O s=l 

(14) 

A an+1 = -* A4n+yi @f116an+1 Azs+1 
.x=0 

en+1 he1 (15) 

,f8(c) = 16(1 + c*)(315ce 

+ 525 c4 + 231 cB + 17) 
Bm = -* Aan [: "+%,a Aas+1 +s;,Vm Bzsl 

s=o 
etc. (16) 

Starting with these functions, the stream function *In the original paper, these (-) signs are missing. 

for the flow past a double row of cylinders with Also the numerical values of A’s and B’s given in the 

equal rectangular spacing (q = a) was obtained original paper are believed to be in error since they do 
not seem to satisfy the given boundary condition, i.c 

by Howland and McMullen as follows: Y = 0, at pl = A. 
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Combining (20) with (14), (15) and (16), and 
simplifying, yields : 

k-- (J .___ (21) is of a form which is amenable to mathe- 

FIG. 2. Co-ordinate system for the potential functions. 
matical manipulation. The velocity of fluid on 
the surface of the cylinder, for instance. can be 

and obtained as follows : 

AC&_+, --: i A;,; ,. AyJ’ --: I. 
7 
I 

, -0 fJ’, ;y r 11” ( ! 
A’“’ 
211~ I 

: o.n:>o (17) % 

Ben = 2 Bt;:. Biy,J = 0, n >. 0 
2v I?; [A.‘,) , h -2’1 (2~ .:- 1) 

lb 1 
)’ -0 i 

A f;im 1; _~ + ~ZIP.2 [Z 28~3g2,& _1 /g&j; , 
cos (217 .~ I ) fl] ;- i LBzn A+! l (211) sin2nH] ). 

(I I 

s--o 
(22) 

- $2"~2~~+~ BE] 
cl*) 

s=l 
From (22), it can be shown that the fluid velocity 

Btn+l” * ),‘?I [f 2s.: ly2* #I;__, 

is zero at the front (0 .. ~12) and rear stagnation 
points (0 -- 3~/2). 

., 0 
iri The present objective is to determine the 

;- x ‘“,L3,,, B;;‘]. (19) potential field. This can be achieved by utilizing 
s=l 

The /3 and y coefficients are given in [7]. 
the relationship 

In the present study, (13) is rearranged into a 
S i:YJ 

more convenient form. Noting that p1 = r/a, 
@ -- I’ i,r do. 

j 
(23) 

a = R,,lX, and then collecting the terms with “lt’ 
cos 0, cos (2~ -+ 1 )O, and sin 2~0, (I 3) can be 

tmately. the potential field is obtained as 

rearranged to read @ = V/7” (2 {/tin -1 A--Sri [(R,,,1/.P ’ 

!?’ --- 1/r cos 0 -;- I’& cos H [A, (R,/r) 
)I- 0 

*- (rjR,Jztr ‘1 sin (211 . I) H I 

~.~ A2 (r/R,) [z Azs-L1 2s+1/31 y-j, Bzs %,I) 
J -0 $ _I&,, h -2’1 ‘1 [(R”$)“” 

.- l,.R,X (Aen+l h--@?b -1) (r/R,)-‘2?&+1) 

+ Xznl-1 (r/RJ2n!’ [z A2,$ .vI *p-:1&p, :1 

--‘&,,yq cos 2ne 9. (24) 

d-0 
The distribution of hydrodynamic potential 

-I- 5 Bzs 2s8ntj.:1]] cos (2n -- I) H 
around a rod located in the interior of a rod 
bundle can be calculated using (24). By letting 

7m ‘Vk,X (Bzvl p;2L + p:” [5 Aestl 2s ilyel, 
I’ == R,. one gets 

5 -0 
. . i Bns 2.3 

Qp, z-z 2VR, [k A,,, . 1 k 2n sin (2~ T I ) H 
~~~3 1 sin 2~70. (20) II 0 

s I _ -_-_ 
* Cf. footnote on page 435 

5 Bzn k2?’ l cos 2n0]. !25) 
,I ~1 
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SQUARE SPACING EOUILATERAL TRIANGULAR 
SPACING 

Frcx 3. Schematic representation of tube bank geometries. 

The difference in hydrodynamic potential be- 
tween the front and rear stagnation points, 
+,/D, can be found by calculating the difference 
of !& at 8 = r/2 and B = 37r/2. Finally, this is 
given by the equation 

4I,lD = 2 : (- 1)” X-2n .421a+r (26) 
n=O 

where A = +(D/Pj and the A’s are as repre- 
sented by (17) and (18). It is not difficult to show 
that the infinite series on the right-hand side of 
(26) will approach unity when the vaiue of D/P, 
“ureter-to-pitch’ ratio, approaches zero. This 
corresponds to the case when a single cylinder 
is placed inside a uniform fluid stream; and, 
as expected, (26) reduces to &/D = 2.0. 

For a rod bundle with eq~lateral triangular 
spacing, such as that shown in Fig. 3(b), (26) is 
still valid. For this case, however, the argument, 
c, must be modified. For this configuration, 
p = a/2, and consequently, 

c = cot (ivrq/a + n/2) = - i tanh (nq/a). (27) 

The hydrodynamic potential drop, &/D, for 
two typical tube bank geometries, as shown in 
Fig. 3, was calculated as a function of D/P. The 
mathematical computation was performed with 
the aid of an IBM 7090. To assure the conver- 
gence of the inhnite series, the ~acla~~n’s series 
expansion coefficient was evaluated up to the 
25th term. The twenty-five b constants [7], b, 
through bs6, for both cases are tabulated in 
Table 1. The convergence of the inkite series 

H.M.-2D 

Tabie 1. Calculated values of b, in (19) 

Bank1 Bank2 

bl 
bz 

ti 
b: 
b, 
b, 
bs 
b* 
b 10 

b li 
b 1P 

b 18 
6 II 
b I6 

;: 
b 18 
6 19 
b SO 
b 21 
b 2.2 
b tt 

-3.15335 
-0.369815 x 10-l 

0.780345 x 10-l 
0.123033 

-0-157498 
-0.169172 

0.161246 
0~140183 

-0.118284 
-0999332 x lo-’ 

0.883536 x 10-l 
0.806613 x 10-l 

-0.759076 x 10-l 
-0.715676 x 10-l 

0.671093 x 10-l 
0*629110 x 10-l 

-0589763 x 10-l 
-0.554786 x 10-l 

0.524518 x 10-l 
0.498253 x 10-l 

-0.474955 x 10-l 
-0.453773 x 10-l 

0.434224 x 10-l 
0.416113 x 10-l 

-0.399474 x 10-l 

-3.11452 
0.847310 x 10-r 

-0.174414 
-0.271576 

O-326546 
0.320401 

- 0.242412 
-0.126639 

&I69492 x lo-* 
-0.993702 x 10-l 

0.156051 
0.166686 

-@132108 
-0*709479 x 10-l 

o-994044 x 10-4 
-0.622787 x 10-l 

0*101615 
0110877 

-0.910285 x 10-l 
~S~30 x 10-x 
o-135303 x 10-a 

-0.452236 x 10-l 
0+750400 x 10-l 
0.831057 x 10-l 

-0.691281 - lo-’ 

-- -- 

was found to be good within the range of DjP 
used. The calculated values of (fi,/D are tabulated 
in Table 2. 

The comparison of the theoretical hydro- 
dynamic potential drop, &/D, calculated in this 
study, with that obtained by Grosh and Cess 
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Table 2. Theoretical values of the hydroc[vnamic potential drop, 4,/D 
--___ ___.__ ._-- 

D,‘P AID 
(Bank 1) 

dl/D 
(Bank 2) , 

D’P CllD 
(Bank 1) 

4llD 
(Bank 2) 

0.00 2.0000 2.0000 
0.01 2.0002 2.0002 
0.02 2.0007 2.0006 
0.03 2.0015 2.0014 
0.04 2.0027 2.0025 
0.05 2.0042 2.0039 
0.06 2.0061 2.0056 
0.07 2.0083 2.0077 
0.08 2.0108 2.0100 
0.09 2.0137 2.0127 
0.10 2.0169 2.0157 
0.11 2.0205 2.0190 
0.12 2.0245 2.0226 
0.13 2.0288 2.0266 
0.14 2.0334 2.0309 
0.15 2.0385 2.0355 
0.16 2.0439 2.0405 
0.17 2.0496 2.0458 
0.18 2.0558 2.0514 
0.19 2.0623 2.0574 
0.20 2.0693 2.0637 
0.21 2.0766 2.0704 
0.22 2.0844 2.0775 
0.23 2.0925 2.0849 
0.24 2-1011 2.0927 
0.25 2.1101 2.1008 
0.26 2.1196 2.1094 
0.2-l 2.1295 2.1183 
0.28 2.1398 2.1276 
0.29 0.1507 2.1374 
0.30 2.1620 2.1475 
0.31 2.1738 2.1580 

0.32 2.L862 2.1690 
0.33 2.1990 2.1804 
0.34 2.2124 2.1923 

0.35 2.2264 2.2046 

0.36 2.2409 2.2174 
0.37 2.2561 2.2306 

0.38 2.2718 2.2444 
0.39 2.2882 2.2587 

0.40 2.3052 2.2734 

0.41 2.3229 2.2888 

0.42 2.3414 2.3046 

0.43 2.3605 2.321 I 

0.44 2.3805 2.3381 
0.45 2.4012 2.3557 
0.46 2.4227 2.3740 
0.47 2.445 1 2.3929 
0.48 2.4684 2.4125 
0.49 2.4927 2.4328 
0.50 2.5179 2.453’J 
0.51 2.5442 2.4757 
0.52 2.5715 2.4983 
0.53 2.6000 2.5218 
0.54 2.6297 2.5461 
0.55 2.6606 2.5713 
0.56 2.6929 2,5976 
0.57 2.7265 2.6248 
0.58 2.7617 2.6531 
0.59 2.7984 2.6826 
0.60 2.8368 2.7132 
0.61 2.8769 2.7452 
0.62 2.9189 2.7785 
0.63 2.9630 2.8132 
0.64 3.0091 2.8496 
0.65 3.0575 2.8876 
0.66 3.1084 2.9273 
0.67 3.1619 2.9690 
0.68 3.2182 3.0129 
0.69 3.2776 3.0589 
0.70 3.3402 3.1074 
0.71 3.4064 3.1587 
0.72 3.4765 3.2128 
0.73 3.5508 3.2702 
0.74 3.6297 3.3311 
0.75 3.7137 3.3960 
0.76 3.8032 3.4652 
0.77 3.8988 3.5393 
0.78 4.0013 3.6189 
0.79 4.1113 3.7041 
0.80 4.2299 3.7975 
0.81 4.3581 3.8983 
0.82 4.4971 4.0082 
0.83 4.6486 4.1288 
0.84 4.8 143 4.2617 
0.85 4.9967 4.409 1 
0.86 S-1985 4.5737 

-_.- -=__I___ 
.-____-_ -. 

using analogical methods, is shown in Figs. 4 spaced more closely, and consequently more 
and 5. From the plots, it is seen that the agree- experimental error may be expected. 
ment between the two is almost perfect up to a 
DIP ratio of approximately 0.2. Beyond this B. Derivation qf the theoretical Nusselt nutnbers 
value, the two are still in satisfactory agreement. The following derivations for the Nusselt 
In the former range of D/P, the tubes are spaced number, Nut, are based upon the same assump- 
relatively far apart. For the latter, the tubes are tions used by Grosh and Cess 14, 51. These 
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FIG. 4. Comparison of the values of 4,/D obtained by 
theory and conducting sheet analogy (Bank 2). 

assumptions have been listed in the previous 

section. The assumption of an inviscid flow is 
equivalent to assuming slug flow around a 
cylinder. As pointed out by Grosh and Cess, 
when the Prandtl number becomes extremely 
small, the heat-transfer rate calculated from 
viscous flow theory could approach that 
calculated by non-viscous theory. 

Assumption (d) appears, on the basis of 
experimental evidence, to be reasonably valid. 
Experimental measurements by both Hoe et al. 
[6] and Borishanskii et al. [I], showed that at a 
Peclet number as high as 1800 (Re = 83000) 
the local heat-transfer coefficient decreased 
gradually from the forward to the rear stagnation 
points. In other words, there is no second 
maximum of the heat-transfer coefficient at 
about 110” from the forward stagnation point, 
as there is for non-metallic fluids. This is due 
to the high thermal conductivity of liquid metals 
which tends to suppress the effect of eddy 
transport of heat. For the case of in-line flow 
of mercury through a rod bundle, Maresca and 
Dwyer [8] also observed that the eddy transport 
of heat was not significant until a Reynolds 
number of approximately 40000 was reached. 

Justification of assumption(f) will be presented 
in the later section of this paper. 

With the assumptions, the energy equation in 
cylindrical co-ordinates can be written as 

(28) 

and, the equation of continuity and the I’. 0 
momentum equations can be replaced by the 
Laplace equation, i.e. 

aw a@ I a-v 
r--+-_t-__=O 

%r2 ar r a82 
(29.1) 

or 

(29.2) 

where 

and 

1 aY a@ 
r.r=---=-- r ae f?r 

aY 1 a@ 
2’0 := ar = - - ---. 

r 89 

(30) 

(31) 

If the co-ordinates are transformed from r, 
0 to # and 4 [2], the mathematical procedure of 
solving (28) and (29) can be simplified. Thus, 
after the change of independent variables from 
r, 0 to #, 4, (28) can be transformed to: 

Geometrically, this transformation maps the 
circular cylinder into a flat plate and gives rise 
to a flow field with constant velocity, I’. As 
shown in Fig. 6, the stream lines (4 = constant) 
and the potential lines (4 = constant) are 
mapped into a set of orthogonal straight lines. 

4,5 I , r , I , I , ( , I , , I I 

4.0 - 
00 

-THIS WORK (THEORETICAL) 

- 00 ---CESS zi GROSH (EXPERIMENTAL) 

3.5 - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0,8 

FIG. 5. Comparison of the values of 4JD obtained by 
theory and conducting sheet analogy (Bank 1). 
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FIG. 6. Co-ordinate:system for mapping of a cylinder into 
a flat plate. 

If the term representing the conductive heat 
transfer in the direction of flow, 22T/2$2, is 
ignored, in comparison to the term representing 
the convective heat transfer in the same direction, 
2Tl24, (32) can be further simplified to 

aT k %2T 
“q=pc,@* (33) 

(33) is equivalent to the basic differential equa- 
tion used by Grosh and Cess in their analysis. 

(a) Nusselt number, Nut, for cosine w&ace 
temperature distribution. If a change in the 
temperature variable is made by letting T’ = T 
- Ti, (33) then becomes 

(34) 

The dependent variable, T’, designates the 
temperature excess above the approaching 
uniform stream temperature, Tz. 

From Hoe’s experimental measurements, it is 
observed that the circumferential distribution of 
the surface temperature of a rod located in the 
interior of rod bundle corresponds fairly closely 
to a cosine distribution. This is illustrated in 

Fig. 7. where the excess tube-wall temperature is 
compared with a cosine curve, for two different 
surface heat fluxes. It therefore seems plausible 
to express the tube-wall temperature distribu- 
tion by the following equation. 

T’ = o1 (1 - cos /3) (35) 

where 8r is the temperature excess at p = n/2. 
From (l), the distribution of hydrodynamic 
potential on the surface of a cylinder can be 
written as 

d, == ‘$ D (I - cos /3) = $ (1 - cos ,13), (36) 
( 1 

Combining (35) and (36) then gives 

T’ = (2W9) 4. (37) 

It is thus seen that the cosine temperature 
distribution around the circumference of a rod 
corresponds to a linear temperature distribution 
along the surface of a flat plate. 

The appropriate boundary conditions for (34) 
are then 

at ij = 0, 0 < #I < $r T’ = (2f.+/+r) (b 7 

at $:=:w. 0 < 4 < d1 T’ = 0 (38) 
at+=O,$>O T’ = 0 i 

and the solution of (34), with these boundary 
conditions, can be obtained by applying Du- 
hamel’s theorem to the solution for a constant 
surface temperature. It is given as [3]. 

7’ = 4 (20,/+,) +i2 erfc 2 1/[(&V)/(k~)]. (3% 

The local surface heat flux is, therefore, 

4” (4) = - k (W/2$),,=-, = 2 2/[(k&,V+)/r] 

(40) 

and, the rate of heat flow over the entire cylindri- 
cal surface is given by 
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FIG. 7. Comparison of outside tube-wall temperature with cosine curves. 
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FIG. 8. Comparison of theoretical equations (cosine tube-wall temperature 
distribution) with experimental results of Hoe et al. and Rickard et al. 
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FIG. 10. Comparison of the hydrodynamic potential on the surface of a cylinder with cosine curves (Bank I ). 

The average temperature excess over the surface 
of the cylinder is 

T’, = $ j$I (24/93 # d$ = 0,. (41) 
1 

Therefore, the average heat-transfer coefficient, 
ht, is 

j& = ” 1 W41 
rrDT, 
I = 3rrD- ~/t(kc~p~)i~]. (42) 

The expression for Nusselt number, Nut, is 
therefore, 

Nut = !$ = & z/‘(Pe) &&/D) (43) 

or 

Nut = 0.958 (&/O)‘!” (Pe)’ 2. (44) 

In the above derivation, the Peclet number is 
based upon the average approaching fluid 
velocity, V. However, when dealing with flow 
across rod bundles, the Peclet number is usually 
based on the average fluid velocity through the 
minimum free area, V,,,. These two different 
expressions for the Peclet number are related 
by the equation 

Pe = (WV,,, (VVm&>. (45) 

Consequently, (44) can be written in the alterna- 
tive form: 

Nut = 0.958 ($JQ1la (Pe)viBx ( V/Vmax)*/2. (46) 

In Fig. 8 (46) is compared with the experi- 
mental results of Hoe, Dropkin, and Dwyer [6]. 

As mentioned earlier, the equation obtained by 
Cess and Grosh, equation (4), is also plotted. 
The theoretical value of&/D used for this case 
is 3.27. From Fig. 8 it can be seen that the 
prediction of Nusselt number by means of (44) 
agrees more closely with results of Hoe et al. 
It should also be pointed out that no empirical 
correlation such as (5) is necessary in using 
(44) and (46). 

Comparison of (46) with the results of Rickard, 
Dwyer and Dropkin [9] is also shown in Fig. 8. 
The results of Rickard et al. are those without 
gas entrainment. The comparison shows that the 
agreement between (46) and the experimental 
results is quite good up to a Peclet number of 
approximately 2000. For the range where the 
Peclet number exceeds 2000, the experimental 
results tend to show higher values than the 
theoretical predictions. This presumably is due 
to the fact that eddy transport of heat is becoming 
significant in this range of the Peclet number. 
For practical situations, however, the Peclet 
number would seldom exceed 5000. (46) to- 
gether with the theoretical values of 4,/O given 
in Table 2 are, therefore, useful in making 
theoretical predictions. 

In deriving (44), it was assumed that the 
distribution of hydrodynamic potential on the 
surface of a cylinder located in the interior of a 
rod bundle could be represented by (36). A 
similar assumption was made by Grosh and 
Cess in extending their theory for flow past a 
single cylinder to that through a rod bundle. 
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Table 3. Calculated values of Agn+, in (24) 
-__- -_ -__ 

D/P = @30 D/P = 0.50 D/P = 0.70 
Bank 1 Bank2 , Bank 1 Bank 2 Bank 1 Bank 2 

.dl j 1.0819 1.0755 ) 1.2664 1.2428 1 I.7065 1.6350 
A, t 2.0623 1~ IO + 3.9848 x 10-j 5.2195 x 1O-4 9.9088 x 1O--4 5.6119 x lo-” 9.9673 \i 1O--y 
.A, / 1.9023x 10-n 6.9419 x lo-lo ! 36857 x 10-e 1.6907 x 10-7 1.4654 x 1O-4 1.9673 x 10-j 
A; / 28102h 10--l’ 9.4984 x lo-l2 4.4401 x 10-g 1.4363 x 10-a 9.3362 ii lo-’ 2.4403 x lo-” 
zju 11 ! 4.7987>\ 84078 x lo-‘> lo-l9 4.7691 2.9449 x x B-2’ 10m’s 

.4,, / / 2.0814i IO-= 6.1959 x 10m*” 

8.2670 5.5648 x x lo-” lo-‘& 5.4977 1.0375 x x lo-” IO-14 3.5031 3.2665 Y x lo-“’ 10-S 2.0987 3.3490 x x lo-“’ 10-a 

Al, 1.2303:. 1O-21 1.2240 x 1O-21 ) 8.5657 x 1O-1B 8.8824 x lo-l6 9.1147 x 10-12 1.0364 x lo-” 
i 1.3162x 1O-‘B 3.3308 x 1O-‘8 ( 1.0784 x lo-l3 1.3677 .i 10-l” 

-i,, i 3.1505,. IO B” 2-4451 1: 10 51 1.3261 x 10m2” 3.5987 x 1O-22 2.5875 X 10-l’ 6.7674 :A‘ 10 -I6 I , i 
I I _T__;._.__-.. .~_L ..~ ______ ~~~ .__ _~~~_____ ..-__-- : ~.._ ~~~~ 

Table 4. Di.~~ihrction of hydrodynanlic potential, &ID, on the srrrfitce of a rod located in the interior of a rod bundle 
~ ~ __ ~~. _~ ~~__~__~-_-.-~-.--_.~ 

DIP = 0.30 DIP = 0.50 I D/P = 0.70 
d, degrees Bank 1 Bank 2 Bank 1 Bank 2 Bank 1 Bank 2 
.___- - 

0 1.080 1.076 
1 1.094 1.080 

1.253 1.239 i I.648 1.601 
30 0.936 0.932 1.467 1.423 
60 0.542 0.539 0,645 0.631 ~ 0.913 0.878 
90 OGOO8 -0GO2 ~ 0.004 -0GO8 i 0.009 -0.020 

120 0.541 --0.541 -0.638 --0643 -0.884 -0.918 
150 -0.937 --0.931 - 1.098 --1.070 1 - 1.473 -1409 
180 1.082 -~~ 1.072 - 1.265 -1.215 

i 

/ -1.692 .- 1.506 

: _ -.__- -4 __-_.______ .-- ..-. .-_ ~~- __.~_._____ ___. 

Theoretical justification of this assumption is 
possible using the mathematical expression of 
potential distribution on the cylindrical surface 
given by (25). The results of the calculation, 
carried out with the aid of an IBM 7094 com- 
puter, are shown in Table 4 for three diRerent 
D/P ratios. Comparisons of these calculated 
values of 9,V with the cosine curves represented 
by (36), are shown in Figs. 9 and 10. For low 
values of D/P, as can be observed, the distri- 
bution of the surface potential, Ds, is well 
represented by (36). It can also be noted that the 
distribution is approximately symmetrical with 
respect to the angle /3 = r/2. At the limit where 
D/P approaches zero, the distribution will 
become completely symmetrical, as indicated 
by (25). This corresponds to the case where a 
single cylinder is placed in a uniform-velocity 
stream. For larger values of D/P, slight deviation 
from (36) occurs. Generally speaking, however, 
(36) is a good approximation for the distribution 
of the surface potential. 

(b) Nusselt nunzber, NUD, for cosine surface 
temperature distribution. If the Nusselt number is 
based upon a mean value of the local heat- 
transfer coefficient, then, from (37) and (40) 

Therefore, the average heat-transfer coefficient 
in the [$, $1 domain can be written as 

To convert this to the I’, tldomain, it is noted that 
it+, = 1111 (nD/2). 

Hence, 
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and the expression for the Nusselt number, 
NUD, becomes 

or 

NUD = 1,437 (+l/D)“a (Pe)“a. (48) 

Comparison of (48) with (44) shows that, for the 
cosine surface tem~rature distribution defined 
by (39, the numerical values of the two types 
of Nusselt numbers can differ by as much as 
50 per cent. It should be point out, however, 
that NUO has much less practical significance 
than does Nut. 

(c) Nusselt number, Nut, for constant surfuce 
heat flux. In the analysis given by Grosh and 
Cess [4, 51, the Nusselt number, Nut, correspond- 
ing to a constant heat flux from the surface of a 
cylinder, was not obtained. Since all experimental 
results have been ~0~~11~ obtained for con- 
stant heat flux conditions, the Nusselt number 
for this case will be derived. This derivation is 
based on a cylinder located in the interior of a 
rod bundle, with the assumption of the hydro- 
dynamic potential distribution given by (36). 

Inasmuch as heat flux is on an area basis, the 
expression for heat flux as a function of # can 
be written 

ds 
(1”@) = q” &j 

where q” is the constant surface heat flux in 
the r, @ domain. From (36), and also from the 
relationship giving the length of arc along the 
surface of a cylinder, s = Dp/2, ds/d+ can be 
expressed as 

ds D D 

Therefore, 
q”D 

q”t+) = ii&/[+ ($1 - qb)] ’ (4% 

The solution of (34) for the case in which the 
surface heat flux is q”(# is given as 131, 

Thus, 

T’ ($) 

In the above equation, the integrai is a complete 
elliptic integral of the first kind. Since 

$/A = (1 - cos ,@/2 

the local surface temperature in the r, B domain 
can be written as 

s n/a 

o [l - ((1 -co~~)~2~sinaf.0]u2* (52) 

The average temperature over the surface of the 
cylinder is therefore, 

w ss n12 dw d/3 
0 0 [l - ((1 -cosj3)f2‘)sinZ0$‘2* (53) 

The heat-transfer coefficient, ht, based upon the 
average surface temperature is then 

ht = II 
~(~k~#~)~D~ ~~~~C~~)~k11’2 

JS 
n/a dw d#3 (54) 

0 0 [l -((l -cos~)/2}sinaw]1/2 

and hence, the Nusselt number, NW, becomes 

Nut zz ‘eD zzz 
,F [fpC~JD)~kl”a (~~D)1’2 

f; K isin W2,11@ 
t551 

where K [sin v/2)] denotes the elliptic integral; 
this equation can be reduced to 

The integral in the denominator of this equa- 
tion was evaluated graphically. The final 
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----EQUATION 146) (COSINE TUBE- 
WALL TEMP., 

-----EQUATION (58)(CONSTANT SURFACE 
HEAT FLUX) 
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FIG. 11. Comparison of theoretical Nusselt numbers 
obtained by assuming (a) cosine tube-wall temperature 
distribution, (b) constant surface heat flux from tube wall. 

expression becomes 

Nut = 0.81 (+I/O)1/* (Pe)l18 (57) 

or, alternatively, it can be written, 

Nut = 0.81 ($JD)‘/* (Pe)$&, (V/Vmax)l/s. (58) 

For the case in which a single rod is placed 
in the fluid stream, a similar derivation can be 
followed. For this case, the Nusselt number was 
obtained as follows : 

7.8736 (Pe)lla 
Nut = so” K [sin @/2)] dB = 1.145 (Pe)r12. (59) 

In Fig. 11, (58) is compared with (46). As can 
be seen, the theoretical predictions for the 
Nusselt number, using (58), fall somewhat lower 
than that calculated from (46). It is thtlefore, 
apparent that in the experimental investigations 
cited, circumferential heat conduction in the 
cylinder cannot be completely ignored. 

CONCLUSIONS 

The results of the present investigation are 
summarized as follows: 

(1) For potential flow across rod bundles, or 
tube banks, the theoretical expression for the 
hydrodynamic potential drop, &/D, for a 
cylinder located in the interior of a rod bundle is 

obtained by utilizing a special mathematical 
function originally proposed by Howland and 
McMullen. Computation of numerical values of 
dl/D is made for two typical tube-bank geome- 
tries. The results are presented in tabular 
form. 

(2) By assuming that the circumferential 
variation of both the tube-wall temperature and 
the hydrodynamic potential can be represented 
by a cosine-type distribution, an expression for 
Nusselt’s number, Nut, is obtained by applying 
inviscid flow theory. This expression predicts 
Nusselt numbers which agree well with the 
experimental results. 

(3) For a rod located in the interior of the rod 
bundle, the distribution of hydrodynamic po- 
tential around the cylindrical surface can be 
satisfactorily approximated by a cosine-type 
distribution. 
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ResumC-On a obtenu des expressions theoriques am&liorees pour les nombres de Nusselt dans I t$xule- 
ment transversal de m6taux liquides B travers des faisceaux de barres, en appliquant l’analyse en flui& 
non-visqueux [4,5]. Les dCveloppements theoriques sont basks sur l’hypoth&se que, pour une barre plact?e 
h l’intkrieur d’un faisceau, les variations circonf&entielles de la tempkrature de la paroi du tube et du 
potentiel hydrodynamique peuvent Ctre exprimkes par des distributions en cosinus. Lapremikre hypothkse 
est dCduite des observations exptrimentales de Hoe et nl. [6], avec des conditions dans lesquelles le flux 
de chaleur etait apparemment presque uniforme, et la derni&re hypothese est post&e sur la basr dc 
considerations thkoriques. Avec ces hypothkses, l’expression suivante pour le nombre de Nusselt, 
semblable & celle de Cess et Grosh [5], devient : 

Nut = 0,958 (C,/O)* (Pe)%msX (V/V,,,,,)*. 
L’expression ci-dessus predit des nombres de Nusselt qui sont en bon accord avec les risultats exptri- 
mentaux obtenus pr&tdemment au Laboratoire National de Brookhaven [6, 91. On a aussi prtsentt 
une rnkthode thtorique de d&termination des valeurs du param&re, 4JD, chute de potentiel hydro- 
dynamique normaliste. Les risultats sont en bon accord avec ceux obtenus expt+rimentalement par Cess 
et Grosh [5]. On a obtenu une expression analytique pour 4,/D en utilisant ces fonctions mathkmatiques 
dCveloppies originellement par Howland et McMullen [7]. Les valeurs theoriques de 4JD pour l’&coule- 
ment g travers deux gtomktries typiques de faisceaux de tubes, c’est a dire l’espacement en car& et 
l’espacement en triangles CquilatBraux, ont &tB obtenues & l’aide d’un calculateur numkrique & grande 

vitesse. On a prbsentk les resultats numCriques sous forme de tableaux. 

Zusammenfussung-Durch Anwendung der Analysis reibungsfreier Stramungen [4, 51 erhglt man ver- 
besserte theoretische Ausdriicke fiir Nusseltzahlen bei fliissigen Metallen in quer angestramten Rohr- 
biindeln. Die theoretischen Ableitungen beruhen auf der Annahme, dass ftir einen Stab im Innem des 
Biindels die Umfangstinderung der Wandtemperatur und des hydrodynamischen Potentials durch eine 
kosinusartige Verteilung wiedergegeben werden kann. Die erstere Annahme ist aus den experimentellen 
Beobachtungen von Hoe und anderen [6] abgeleitet. Der Wlrmefluss war dabei nahezu gleichfiirmig. 
Die letztere Annahme erscheint auf Grund theoretischer Beobachtungen gerechtfertigt. Mit diesen 
Annahmen ergibt sich, &hnlich wie bei Cess und Grosh [5] folgender Ausdruck fiir die Nusseltzahl: 

Nut = 0,958 (b,/D)* (Pe)hv,B, O’/V,,,)t. 
Die nach obiger Gleichung errechneten Nusseltzahlen stimmen gut mit kiirzlich in Brookhaven National 
Laboratory [6, 91 erhaltenen experimentellen Ergebnissen iiberein. Eine theoretische Methode doe 
Werte des Parameters 4JD des hydrodynamischen Potentialgefalles zu bestimmen, ist ebenfalls ange- 
geben. Die Ergebnisse stimmen gut mit den von Cess und Grosh [5] experimentell erhaltenen iiberein. 
Ein analytischer Ausdruck fiir 4,/D llsst sich mit Hilfe urspriinglich von Howland und McMullen 
entwickelter mathematischer Funktionen [7] angeben. Die theoretischen Werte von &/D fiir die AnstrB- 
mung zweier typischer Anordnungen der Rohre im Rohrbiindel nlmlicb in der Form vcn Quadraten und 
von gleichseitigen Dreiecken wurden mit Hilfe eines Hochgeschwindigkeitsdigitalrechners erhalten. Die 

numerischen Ergebnisse sind in Tabellenform wiedergegeben. 

Ba~oTa~nsI--Ha ocaone aIiann3a HeBn3Koro Te’Iemirr [4, 51 no.?y~Ierlbr tIoBbre TeopeTHqecKue 
BbrpameuaR gtlcen HyccenbTa nplr nonepewoM TeqeHkm HI~I~H~IX MeTanzotI qepes q91rIr 

CTepNIeii. TeopeTaqecKLle BbIBOZbI OCHOBaHbI Ha AOl7yWeIiIlH, qT0 &7tFI CTepHEHFI, pacnonomett- 

~Oro mIyTp51 nysKa, n3MeHetIne no nepnMeTpy TeMnepaTypbI cTeKKt5 Tpy6bI II rrI~po~mta- 

~~Imec*;oro noTernlRana t3bIpawaeTcH KocatiycoI~~n.?btIbt~l pacnpeaeneanem. 3To na5nioaerine 
BbIne&etIO 113 NiCnepBMeIITaJIbHbIX Ha6Jlt0JIeHliii XOy II &p. [6] B yCJIOBLIRX, KOrA3 TeIIJtOBOii 

IIOTOK 6bIJI RBHO 6jIM30IE K O~HOpO;lHOMy; IIOCnCHHee IIOCTyJInpyeTCR 113 OCHOBe TeOpeTwe- 

ctioro aHaJrn3a. rIp51 TaKMx AonymeHtrRx nony4aeM cnefiyroqee BbIpa;tteHMe nJIfI 'tllcrlil 

HyCCeJrbTa, nono6Hoe tIoJIy~IeHHoMy UeCCOM 14 rpOrUeM [5]: 

Nut = 0,958 (Cl/D)” (Pe)Lvn,,lx (VlV,,$. 
3TO Bbtpalttemte AaeT 3tia'IeHIwI WCeJI Hyccenwa, KOTOpbIe XOpOmO COrJEaCywTCFt C 3KCIIepH- 

MeIITaJtbHbIMH pe3yJIbTaTaMH, ItOJtyseHHbIMti patree B HaqMoaanbtIoB na6opaTopmi BpyKX?- 

setia [6, 91. 
Tame rrpeacTasneH Teopemsecrtmtt MeTon onpeneneann 3ffa‘teHxfi napaMeTpa 4,/D II 

nepenana rI~~po~LiHaM~lYeCKOr0 n0TeHLtLlajra. PeaJVIbTaTbt XOpOmO COraaCylOTCH C 3KCtIepW 

JleHT3JtbHbIMIt fiaHHbIMrH uecca Pi rpoma [5]. MctIojrb3yR MaTeMaTIvIecKkle @ytfKwCI, nepno- 

IIaYaJIbHo BbIBeAeHHbIe Xaynermoti II Mat{-MwtneHos~ [7], Ha@tettO atIaJr&fTarlecKoe 

nbIpa2KeHwe AJtFI c&/D. c nOMOmbtO 6btCTpOJtetiCTBy"N~tefi qW$pOBOfi BMWCJtRTeJlbHOi? 

MaUIIIHN nOJIyYeHu TeOpeTIwecKEle 3ttaqetIwt 4,/D znn Te~~etnm sepea sna o6arqttoro 
nrijqa nywia ~py6: no KBanpaTaM II pat3Ho6eJtpetfHbIM TpeyronbrraKaM. %cneatrbxe 

pe3yJIbTaTbI npeACTaB.TeHbI B BlrHe Ta6JtHLI. 


